Viscosity measurement based on shear-wave laser speckle contrast analysis.

نویسندگان

  • Yi Cheng
  • Sinan Li
  • Robert J Eckersley
  • Daniel S Elson
  • Meng-Xing Tang
چکیده

Tissue viscosity is correlated with tissue pathological changes and provides information for tissue characterization. In this study, we report an optical method to track continuous shear-wave propagation at centimeter depths in an optically turbid medium. Shear-wave attenuation coefficients were measured at multiple frequencies using shear-wave laser speckle contrast analysis (SW-LASCA) to quantitatively estimate tissue viscosity using the Voigt model. Shear waves were generated within tissue-mimicking phantoms by an amplitude-modulated ultrasound (modulation frequency: 100 to 600 Hz) and tracked by time-resolved laser speckle contrast difference received on a charged-coupled device camera. Averaged contrast difference over a selected time window was related to shear-wave amplitude and used to calculate the shear-wave attenuation coefficient. Phantoms of varying viscosities (0.1 and 0.3 Pa s) were studied. Attenuation coefficients for different shear-wave frequencies (100 to 600 Hz) were calculated. Derived viscosity values had a maximum standard deviation of 9%, and these values were consistent with the independent measurements reported in a previous study using nonoptical methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking shear waves in turbid medium by light: theory, simulation, and experiment.

Shear wave propagation provides rich information for material mechanical characterization, including elasticity and viscosity. This Letter reports tracking of shear wave propagation in turbid media by laser-speckle-contrast analysis. The theory is described, and a Monte Carlo simulation of light shear wave interaction was developed. Simulation and experiments on tissue-mimicking phantoms agree ...

متن کامل

Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System

This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI) as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats w...

متن کامل

Assessing White Wine Viscosity Variation Using Polarized Laser Speckle: A Promising Alternative to Wine Sensory Analysis

In this paper, we report measurements of wine viscosity, correlated to polarized laser speckle results. Experiments were performed on white wine samples produced with a single grape variety. Effects of the wine making cellar, the grape variety, and the vintage on wine Brix degree, alcohol content, viscosity, and speckle parameters are considered. We show that speckle parameters, namely, spatial...

متن کامل

Simultaneous measurement of water flow velocity with fluorescent and speckle imaging technique

The average velocity of water flow has been simultaneously measured with fluorescent and speckle imaging methods. The measured velocities with two methods are in good agreement with each other and it confirms that the speckle imaging method can be used as a confident method to measure the velocity of water flow in a dry leaf. Also the velocity of water flow through thick and thin xylems of a le...

متن کامل

Phase Shifting Technique in Laser Speckle Image Processing

A simple technique of speckle photography has been applied to measure small changes/deformation of the surface of laser scattering materials. Low-cost commercial charge coupled device photo camera provides the images of Laser speckle pattern with the beam splitter arrangement. A speckle pattern has been taken with the system at rest and then second image captured after the deformation was made ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 2013